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Space-charge-limited current flow between plane-parallel 
electrodes in a low-density gas 

C B Wheeler 
Plasma Physics Department, Imperial College of Science and Technology, Prince Consort 
Road, London SW7 2AZ, UK 

Received 28 June 1979 

Abstract. The electrons produced by cathode emission in a plane diode generate ions by 
collisions with background gas atoms. Poisson’s equation is solved numerically in the steady 
state for non-relativistic particle motion assuming that, at the cathode surface, there is zero 
field and an abundant supply of zero-energy electrons. A suitable choice of non-dimen- 
sional variables enables the interelectrode potential distribution, space charge distribution 
and electron current density to be presented quite generally as a function of the gas filling 
parameters. The calculations are carried out for anode potentials up to 30 kV and for diode 
currents up to 1.7 times the Child-Langmuir vacuum limit. Depletion of neutral particles 
defines two modes of diode operation to which these calculations are applicable. The first is 
the pulsed mode on a time scale over which the neutral depletion is negligible and the second 
mode is the final steady state in which the ion flux is taldnced by an opposing self-diffusion 
flux of neutral particles. Finally, the calculations are applied to diodes with a xenon gas 
filling and it is shown that the above currents can be generated with less than 1% gas 
scattering of the electron beam. 

1. Introduction 

Electron beam generators are usually designed to provide the maximum possible beam 
current for a given applied voltage and electrode geometry. If the cathode emits 
sufficient electrons then this ultimate current occurs when the field at the cathode 
surface is reduced to zero by the effects of negative space charge. This is approximately 
true even when the cathode emits by field emission since, at very high powers, a plasma 
quickly forms on the face of the cathode electrode. The plasma subsequently acts as a 
field emitting cathode of very low work function and copious emission takes place for 
very low values of cathode field. In some electron beam applications it is not 
permissible to achieve a substantial increase in beam current by raising the applied 
voltage since the electrons are required to have a prescribed energy. An increase in 
cathode emitting area or decrease in electrode separation will increase the total current, 
but there may be experimental factors that prevent such modification. A current 
increase may be achieved more simply by reducing the negative space charge in the 
cathode region through the introduction of positive ions. Wheeler (1974a) discussed 
how this can be done in a plane electrode configuration by injecting ions normally 
through the cathode and allowing them to reflex back again. However, very powerful 
ion sources would be required and a more convenient experimental procedure is to 
inject neutral particles into the diode and produce the ions internally by electron 
impact. Wheeler (1974b) has evaluated the electron currents attainable in this situation 
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1874 C B Wheeler 

as a function of the position and density of a thin sheet of gas atoms injected parallel to 
the electrodes. This paper considers the very simple experimental arrangement of a 
diode that has a low density, uniform gas filling. The theoretical analysis is more 
complex than the earlier neutral sheet problem in that the basic differential equation is 
raised from the second to the third order. Introduction of a gas within the diode 
naturally produces a scatter in the electron beam. However, the beam-gas interaction 
required by the theory is very small since one slow ion can neutralise many fast 
electrons. 

2. Mathematical formulation 

Consider a plane-parallel electrode geometry comprising a cathode at zero potential 
and an anode at potential V, distant a away. Let z measure the spacial distance 
normally from the cathode towards the anode and let n be the number density of the gas 
filling atoms. If J-(z’)  is the electron current density at position z’ then between planes 
at z’ and z ’+dz ’  there are (n/e)J-(z’)(+-(z’)  dz’  ionising electron-atom collisions per 
unit area per second where a-(2‘) is the atom cross section for single ionisation 
appropriate to the electron energy at position 2 ’ .  The influence of other ionising 
collisions produced by electron impact is considered in § 2.3.  One additional electron is 
produced at each collision and, in the steady state, the total electron current density at 
position z is obtained by integrating over 0 s z’ s z : 

L ( z )  = L ( O )  exp[ n loz a&’) dr’] 

where L ( 0 )  is the current density at the cathode surface. In order to evaluate the 
negative space charge density at any position it is necessary to express L ( z )  in its two 
principal velocity groups of electrons: 

I J - ( z )  = J-(O) exp 

+J-(O){ exp[ n l z a - ( z ’ )  0 dz’] -exp[ -n loz a-(z‘)  dz‘]}. 

The first term here is the contribution due to electrons that leave the cathode and reach 
the position z without suffering a collision. These electrons are freely accelerated 
through the potential V ( z ) .  The second term represents pairs of electrons starting at a 
collision at position z’ and subsequently freely accelerated through the potential 
V ( z )  - V(z ’ ) .  It is assumed that, after impact, the ionising electron is at rest and also 
that the electron produced by ionisation is initially at rest. If the probability of an 
electron suffering a collision between the electrodes is small then the exponentials may 
be expanded and only first-order terms in the collision integral need be retained. 
Division by the appropriate electron velocity then enables the negative space charge 
density to be expressed: 

p-(z)  = -( E)1’2J-(0){  V-’/’(z)[ 1 - n loz a-(z’)  dz‘ I 
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This expression is valid providing there is no potential maximum between the elec- 
trodes where slow electrons might accumulate, and all potentials must be sufficiently 
low for non-relativistic treatment of electron motion to apply. Furthermore, it is 
assumed that the electrons travel normally from cathode to anode; this implies that the 
magnetic field produced by the current flow is insufficient to perturb significantly the 
straight line trajectories. Ions produced by electron impact are accelerated from rest 
towards the cathode. However, the probability of collision with a neutral atom is 
significant since the cross section for symmetrical charge transfer is large. These latter 
collisions produce no additional ions and, in the steady state, the total ion current 
density at any position t is obtained by integration over all ionising collisions between 
position z and the anode: 

J + ( t )  = n l a  J-(z’)a-(z’)  dz’ 
z 

(4) 

In order to evaluate the positive space-charge density this current density must be 
expressed in its principal ion velocity groups: 

J + ( z )  = n / ’J-(z’)a-(z’)  exp[ -n 
2’ 

a+(t’, 2”) dz“] dz’ 
2 

+ n [2aJ-(z’)u-(z’)[  1 -exp[ -n lZ“ a+(z‘ ,  z ” )  dz”]} dz’. ( 5 )  

The first term here is the contribution due to ions produced at position z ’ ,  where 
t < t’< a ,  that are accelerated through the potential V(z’) - V(z) to reach position t 
without suffering a charge transfer collision. a+(z‘, z”) is the symmetrical charge 
transfer cross section for an ion of energy V(z‘) - V(z”), where z < t”< 2’. The second 
term represents ions that are produced by charge transfer at position z” and then freely 
accelerated through the potential V ( z ” )  - V(z). Substitution for J - ( t ’ )  from equation 
(l), expansion of the exponentials to first order in the collision integrals and division by 
the appropriate ion velocity then enables the positive space-charge density to be 
expressed: 

z ’  

x [ 1 - n I,” a+(z’, z”)  d z ” + n  a-(z”) dz”] dz’ 

.a  C Z ’  

+ n J, a-(2’) J a+(z‘, z”)[ V(z”) - V(Z)]-’/~ dz” dz’ 
2 

This expression assumes that there is no potential minimum between the electrodes 
where slow ions might accumulate and also that the ions produced by charge transfer 
are initially at rest. 

2.1. Poisson’s equation 

d2 V ( t ) / d t 2  = - 4 ~ [ p , ( z )  +p-(t)]. (7) 

A first integration with respect to z can be performed after multiplying both sides of this 
equation by 2dV(z)/dt .  It is then convenient to take potential as the variable of 
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integration instead of the spacial variable. This is achieved by putting d z ’ =  
d V(z’)[d V(z‘)/dz‘]-’. A great simplification follows if dimensionless potential and 
spacial variables are introduced: 

and also if the cathode current density J-(O) is expressed as a multiple of the 
Child-Langmuir space-charge-limited electron current density, Jo, for the vacuum 
diode : 

1 
9lT 

J~ = - ( 2 e / m ) ” 2 ~ : / 2 a - 2  (9) 

Equations (3), (6), (7), (8) and (9) then lead to the following equation for the fully 
space-charge-limited current J- (0) ,  corresponding to zero cathode field. 

(10) 
The four terms comprising the right-hand side of this equation are presented in order of 
significance and the space charges responsible have their respective origins in: 

(i) the electrons, in absence of ionising collisions, 
(ii) the ions, in absence of charge transfer collisions, 
(iii) the slower ions resulting from charge transfer collisions, 
(iv) the slower electrons resulting from ionising collisions. 

For most gas atoms the cross section for ionisation by electron impact is well represen- 
ted by the two-parameter Bethe-Born relation: 

B 
a-( V) = - ln(CV) 

V 

where V is the potential energy of the impacting electron, assumed non-relativistic. 
This relation indicates a threshold at V = C-’ and a maximum cross section at 
V = 2-72C-’. In terms of the parameter y the cross section becomes 

a-(}’) = a-( Vu)  - 
y 1 n O  

where D = CV,. 

2.2. Numerical solution 

If the gas filling density is sufficiently small then the third and fourth terms on the 
right-hand side of equation (10) are negligible in comparison to the first two. The 
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technique of solution adopted is iterative, starting with the simple vacuum relation, i.e. 
n = 0 in equation (lo), and subsequently increasing the filling density by small incre- 
ments. A correction due to the effects of slower ions and slower electrons is considered 
in Q 2.3. With these simplifications and substitutions equation (10) can be written: 

where 

It is now convenient to assuine that dy '/dx in the integrand above is a known function of 
y'.  The equation can then be regarded as separable and direct integration gives 

Y 1  x ( 7 )  J-(0)  1/2 =i[oy[y1 '2-A[ [ [ y ' ( y ' - ~ ) ' ' ~ ( Y )  lnD]-11n(Dy')dy'dy}-1'2dy. 
O Y  X 

(15) 
It must be remembered that y ' here has the minimum value of D-' (threshold); 
otherwise the cross section a - ( y ' )  will be negative. This equation is solved numerically 
and iteratively starting with a trial expression for dy'ldx in terms of y'.  For small values 
of A this initial approximation is the Child-Langmuir law, corresponding to A = 0 and 
J-(O) = J o  in equation (15). In this case integration leads to x = y3'4, giving dy/dx = 
$y 'I4. Numerical evaluation of the three successive integrals in equation (15) then gives 
a first estimate of x as a function of y and J-(0)/Jo. In particular the coordinate x = 1, 
y = 1 determines the value of J- (0) /Jo  for the values of A and D chosen. Substitution of 
J - (0 ) / Jo  into equation (13) then gives improved values of dy'ldx which in turn, by 
substitution into equation (15), gives an improved value of J-(0)/Jo. The integrands 
frequently diverge to infinity but the integrals are always finite. In these divergent 
regions the integrands are approximated by interpolated power series and the integra- 
tions performed analytically. For each successive value of A the trial expression taken 
for dy' ldx is that appropriate to the preceding smaller value of A,  corresponding to the 
same value of D. 

Equations (12) and (14) show that the parameters D and A depend on both the 
nature of the filling gas and the anode potential. A range 40 < D < 4000 is chosen 
which, for a threshold potential of 25 V, corresponds to 1 kV< V, < 100 kV. The 
larger values of D require a greater number of iterative cycles and smaller increments in 
the value of A.  Calculations are terminated at J - ( 0 ) / J o  = 1-7  which requires four 
iterative cycles of integration and increments of 5 X in A to reproduce the current 
to < 0 . 2 O / 0  at D = 4000. Figure 1 shows the value of the parameter A required to obtain 
a particular multiple of the Child-Langmuir current for D = 40, 400 and 4000. The 
strong convergence of the iterative technique employed is due to the small departure of 
the potential distribution from that appropriate to the Child-Langmuir law (A = 0). 
This is shown in figure 2 which is a plot of equation (15) for J-(0)/Jo = 1.7 and for 
D = 40 and 4000. On the scale of this diagram the plot for D = 400 would not be 
resolved from the central curve x = y3I4, corresponding to A = 0. It is apparent that 
there are no potential maxima or minima between the electrodes, as assumed when 
formulating the space charge densities. Equations (6) ,  (8) and (9) enable the positive 
space-charge density to be expressed in non-dimensional form and figure 3 shows the 
distribution for J-(0)/Jo = 1.7 and for D = 40,400 and 4000. This density is zero at the 
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A 

Figure 1. The electron current density as a function of the gas filling parameters A and D. 

z /a  

Figure 2. The interelectrode potential distribution for J-(0)/Jo = 1.7 and for selected 
values of D. 

anode, since ions cannot drift towards that electrode, and the density increases as the 
cathode is approached. However, there is a maximum of positive charge just in front of 
the cathode surface (y = 0). This arises because ionisation by electron impact cannot 
take place in the region 0 < y < D-l;  therefore any ion reaching the cathode does so 
with a velocity appropriate to an energy of at least the threshold potential. On the other 
hand, in the interelectrode region, D-' < y < 1, there are always some ions instan- 
taneously at rest which contribute significantly to the local positive space charge. For 
D = 400 and 4000 the maxima are too close to the cathode to be resolved in the figure, 
but for D = 40 the maximum is apparent and reference to figure 2 shows that it is 
located in the vicinity of y = 2.72/D where, from equation (12), the ionisation cross 
section maximises. 
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! j  
' I  

Figure 3. The positive space-charge distribution for J- (0) /Jo  = 1.7 and for selected values 
of D. 

2.3. Limitations to the theory 

The influence of multiply charged ions, produced by electron-neutral impact, can be 
included in the analysis by taking the appropriate sum over partial cross sections. These 
partial cross sections are well represented by equation (1 l ) ,  which is generalised to 

(16) 
B 

g?(V)='ln(C,v) 
V 

where z is here the charge of the ion produced. The collision term that dominates the 
space-charge distribution is the first term on the right-hand side of equation (6). 
Addition of the terms for multiply charged ions into the integral shows that their 
combined effect is equivalent to defining the cross section as 

It readily follows from equations (16) and (17) that the simple expression of equation 
(11) can be retained, provided B and C are defined as: 

It should be noted that these are not the same parameters that define the more usual 
gross cross section. In this latter case it is ion current, not space charge, that is under 
consideration and this leads to z l i 2  replaced by t in equation (18). 

Collisions between electrons and singly charged ions must also be considered since 
the ion has a cross section for further ionisation by electron impact that is comparable to 
that of the neutral atom. An estimate of the effect of these collisions is determined by 
assuming that the ion density n+ is uniform across the interelectrode gap. If the 
electron-ion cross section a" ( V )  has the same relative energy dependence as a-( V)  
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then the parameter A of equation (14) is increased by the following amount: 

A + [1+ v’%z+v-’( V,) /na-(  V,)]A. (19) 

The ion density distribution n + ( z )  is proportional to the positive space-charge density 
p+(z) ,  and if Y ( z )  denotes the ordinate of figure 3,  then 

n+(z)  = Y ( z ) V a / e a 2 .  (20) 

By taking the maximum value of n + ( z )  an upper limit to the increase in A can be found. 
Higher-order terms in the exponential expansion of equation (1) influence both 

p-(z)  and p+(z) .  However, the effect on p - ( z )  can be disregarded since it will be shown 
that even the first-order term, namely the slow electron term, has a negligible influence 
on the cathode current. The next significant term in p+(z) ,  which arises from the 
first-order term in equation (1) via equation (4), is more significant and its influence on 
equation (13) is to increase the parameter A by an amount always less than 

A + (1 + P _ ) A  

where 

P.. = n a-(z).dz. I”, 
Physically P- is the probability that an electron suffers an ionising collision with a 
neutral particle in its passage across the interelectrode gap. Elimination of n through 
equation (14) enables P- to be expressed as 

The integral here can be evaluated analytically in terms of a-( V,) using equation (1 1) 
and assuming that the potential distribution obeys the Child-Langmuir law. For 
40 < D  < 4000 this calculation shows that (A/a-( V,)) j,’ ~ ( x )  dx maximises within the 
range of D and for J-(0)/Jo = 1.7 it has the peak value of 0.50. Therefore within the 
range of the present calculations 

P .  s 1+o(m/iaa)”*. (21) 

Consequently the higher-order terms cannot increase the parameter A by more than 
the following amount: 

A + [1+ ( m / M ) ’ / 2 ] A .  ( 2 2 )  

At sufficiently high anode potentials the proper relativistic treatment of the electron 
motion leads to space-charge densities greater than those given by equations ( 3 )  and (6). 
If only first-order terms in the parameter eV/mc2 are retained in the expression for the 
electron velocity then the principal negative space-charge term in equation (10) is 
modified as follows: 

yl”+ (1 + ~ . ~ y e ~ , / m c ~ ) y ’ / * .  

In order to assess the significance of the term in brackets the whole expression is 
averaged over the electrode gap, assuming a potential distribution obeying the Child- 
Langmuir law. The average value of yl/’ then undergoes the modification: 
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The principal positive space-charge term in equation (10) is modified, by relativistic 
effects, through the parameter c+-(y). A first-order connection to the ionisation cross 
section formula, equation (1 l ) ,  can be evaluated from the general expression given by 
Mott and Massey (1965): 

~ - ( y ) + { l +  1*5y[l-  l/ln(Dy)]eV,/mc2}~-(y). 

The relativistic correction increases with the value of D, since V, =: D/C, and for 
D = 4000 the averaging process gives 

(24) 
- 
a - ( y )  + (1 + 0 - 1 5 3 e ~ , / m c ~ ) c ~ _ ( y ) .  

The proximity of the two numerical factors in equations (23) and (24) suggests that a 
good first-order relativistic correction to equation (13) is simply a multiplicative factor 
of (1~0.146eV,/mc2) on the right-hand side. This implies that the current ratio 
previously calculated undergoes the following modification: 

J-(0)Jo + (1 - 0.146e V,/mc ' ) J -  (0) /Jo .  ( 2 5 )  

The self magnetic field of the current flow tends to pinch the electron beam, producing a 
smaller beam diameter at the anode than at the cathode. A simple analysis of the 
electron trajectory, assuming uniform current density and a constant electron energy of 
ieV,, shows that electrons emitted from the cathode at radius r from the centre of 
symmetry reach the anode at radius 

[ 1 - 0 0  157(e v,/mc ')J-(O)/J~]~. 

This pinching has less effect on the cathode negative space charge than on the cathode 
positive space charge since p-(0)  is generated by electrons directly emitted from the 
cathode whereas p+(O) is generated by ions that are produced throughout the gap, and 
which subsequently drift towards the cathode. A gross overestimate of the effect on the 
net current can be deduced by assuming that p- (z )  everywhere is unchanged by 
pinching, whereas p+(z)  everywhere is increased by the amount appropriate to the 
pinched electron current density at the anode. This implies that J- (z ' )  in equation (4) is 
increased to the value 

J -  ( O ) [  1 + 0.3 14( e V,/ mc 2)J-(0)50!1 

If the analysis of § 2 is pursued with this modification it is found that the parameter A 
undergoes a similar increase. Consequently the influence of the self magnetic field is to 
increase the parameter A by an amount less than 

A + [l +O*314(eV,/mc2)J-(0)/Jo]A. (26) 

According to Massey and Gilbody (1974) the cross section of an ion for symmetrical 
charge transfer has the following dependence on energy: 

(T+ = a ( p  -In v ) ~  
providing the potential V is well above threshold. Consequp,ntly U+ falls off with 
increase of potential far more slowly than c+- of equation (11). This implies that the 
effects of charge transfer collisions, neglected in § 2.2, become more important as the 
anode voltage is increased. The third term on the right-hand side of equation (10) 
represents the influence of t5ese collisions and the comparatively weak dependence of 
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U+ on potential suggests that an average cross section can be taken outside the integral 
without much loss of accuracy. If this is done then, in conjunction with equation (12), 
the parameter outside the bracket is Ana@+ = AP,, where P, is the probability that an 
ion suffers such a neutral collision in traversing the electrode gap. For a prescribed 
value of A the value of P, increases with increase in anode voltage simply because, from 
equations (11) and (14), nu is almost proportional to V,. Numerical solution of 
equation (10) for 0 G P+ < 0.15 shows that, at J - (0 ) / Jo  = 1.7, the cathode current is 
increased by 1% for each increment of 5 %  in the probability P,. 

The influence of slow electrons, resulting from ionising collisions between fast 
electrons and neutral particles, is given by the fourth term on the right-hand side of 
equation (10). If CT- is substituted from equation (12) then the parameter outside the 
bracket here isA(m/M)'/2. Numerical solution of the equation, forJ-(0)/Jo = 1.7, and 
with an ion mass equal to that of the proton, shows that the slow electrons cause a 
reduction in cathode current of less than 0.1 O/O.  

2.4. Establishment of the steady state 

If the neutral background density remains uniform and constant, as assumed in the 
previous subsections, then the steady state is established when the first ion produced 
near the anode has drifted to the cathode region. This concept of the steady state 
cannot persist since the production of ions necessitates the depletion of neutral 
particles. However, it is possible to define a time regime over which the foregoing 
theory is valid within a specified accuracy. This regime is limited at its lower end by the 
above ion transit time and the upper limit is defined to be the time taken for neutral 
depletion to cause a current reduction of less than 2%. As time proceeds the 
concentration of neutral particles at the cathode builds up due to neutralisation of ions 
at the electrode surface. Subsequently these neutral particles are transported away 
from the cathode by self-diffusion. Eventually a steady state is reached when, across all 
planes, the net flux of positive ions is balanced by an opposing diffusion flux of neutral 
particles. The neutral-particle density distribution across the electrode gap can be 
calculated in this situation and conditions established under which the deviation from 
the initial filling density is sufficient to cause less than 2% change in the diode current. 

The transit time of an ion from the anode, where it is produced at rest, to the cathode 
in a potential distribution defined by the Child-Langmuir law is 

T~ = I - O ~ ~ ( M / ~ V , ) ' ' ~ .  (27) 

The neutral density begins to deplete everywhere as soon as diode current flows and the 
decay time constant at any coordinate z is 

T(Z) = e/c+-(z)J-(z). 

This decay is fastest at the coordinate where the cross section has its maximum value 
uM. If the neutral density at this coordinate falls by 2% then the effect on the diode 
current is less than if the neutral density everywhere fell by 2%. In this latter case figure 
1 shows that the associated reduction of A to 0.98A produces a fall in J - (0 ) / Jo  that is 
less than 2%. Consequently a time scale 72 can be defined over which the current ratio 
falls certainly by less than 2% : 

72 = 0 . 0 2 e / ~ ~ ~ J - ( O ) .  
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Elimination of J-(O) through the current ratio and equation (9) leads to 

The time scales T~ and T~ define a time interval for pulsed operation of the diode 
throughout which the current ratio departs by less than 2% from the values presented in 
figure 1. 

In the final steady state the concentration gradient of neutral density is determined 
by the local balance between ion flux and diffusion flux: 

d a n ( z ) / d z  = ( l / e ) J + ( z ) ,  

where d is the coefficient of self-diffusion. This equation can be integrated analytically 
from cathode to anode after substituting for J + ( z )  from equations ( l ) ,  (4) ,  (9), (12)  and 
(14) and assuming a Child-Langmuir potential distribution. In particular, the neutral 
density at the cathode n (0) is increased above the initial filling density n : 

n ( 0 )  = n [ 1 + Fy ( D ) ]  (29) 

where 0.155 6 y(D) < 0.286 for 40 C D  s 4000. Also the density at the anode n ( a )  is 
decreased: 

n ( a )  = n [ l  -FS(D)]  (30) 

where 0.116 2 S ( D )  a 0.095 for 40 s D s 4000. In these two equations: 

where the dependence of the diffusion coefficient on density has been removed by 
putting d = f / n .  The diode current is more sensitive to ion production in the cathode 
region than in the anode region; moreover y ( D )  > S(D) for all D. These two obser- 
vations imply that the condition F y ( D )  c 0.02 is sufficient to ensure that, in the steady 
state, the diode current is less than 2% greater than the value given by figure 1 .  This 
condition can be interpreted as an upper limit to anode potential: 

The time scale to establish this steady state is determined by the competing processes of 
neutral depletion and neutral diffusion. Neutral depletion is slowest at the anode where 
the electrons have their greatest energy and so experience the smallest ionisation cross 
section. The decay time constant here is 

T ( a )  = e/u-( V a ) J - ( a ) .  

Equations (9) and (11)  enable this to be expressed as 

The time constant of the diffusion process is determined by the decay constants 
associated with the spacial Fourier components of the neutral density build up at the 
cathode surface. The lowest harmonic has the greatest time constant, which is 

~ ( 1 )  = a2/rr2d = na2/.rr2f. 
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Over the range of variables to which the calculations have been applied it is found that 
.(a) >> ~ ( 1 ) .  Consequently the time scale to establish the steady state, within the 
restriction of equation (31), is certainly less than the time 73 required for the anode 
region to deplete by 2% in neutral density: 

73 = 0.027(U). (32) 

3. Application 

Figure 1 shows that the value of A required to produce a prescribed value of J - (0 ) / Jo  
has a weak dependence on the parameter D. This permits a good interpolation formula 
to be constructed giving A as a quadratic function of IgD, thus enabling A to be 
evaluated at selected values of V, where D = CV, and C is a function of the filling gas. 
For example, at J-  ( 0 ) / J o  = 1.7 interpolation gives 

A = 0.0745 + 0,0387 lg(4000/D) + O.O126[lg(400O/D)]*. 

Equation (14) infers that massive atoms of large ionisation cross section, such as 
mercury or the heavy alkalies, are most effective in reducing the negative space charge. 
However, the cathode emission process can be greatly impaired by the presence of 
reactive vapours and an inert gas filling is far more acceptable in practice. Xenon is 
chosen for the purpose of illustration since it has both a large mass and cross section, 
therefore yielding a lower filling density than the lighter inert gases. In addition, the 
value of P, = nucl.+ is lower, so minimising the correction to be applied for the effects of 
charge transfer collisions. Furthermore, equation (22) shows, for xenon, that the 
correction due to higher-order terms in the expansion is A -+ 1.002A which, to the 
accuracy representable in figure 1, is a negligible correction. Schram ef a1 (1965) and 
Schram (1966) have measured the partial ionisation cross sections of the inert gases at 
electron energies up to 20 keV and found excellent agreement with the theoretical 
relation (14). In conjunction with equation (18) these partial cross sections for xenon, 
including six stages of ionisation, give B = 4.37 x cIn2 V, C = 0.055 V-'. This 
value of C enables A to be interpolated for prescribed values of Vu and J- (0) /Jo .  The 
parameter nu can then be determined from equations (11) and (14) using the above 
value of B. Figure 4 shows the results obtained for V, =; 1, 3, 10 and 30 kV where na 
has been expressed in terms of the product of gas pressure (Torr at 20 'C) and electrode 
spacing (mm). 

Higher anode potentials are not considered due to the accuracy of the corrections 
that have been applied to take account of charge transfer collisions and relativistic 
effects. The average value of the cross section used for determining the probability of a 
charge transfer collision is that calculated for xenon by Rapp and Francis (1962), 
evaluated at half the anode potential. Over the range of variables covered in figure 4 
this probability has a maximum value of B, = 0.11, occurring at V, = 30 kV and 
J - (0 ) / Jo  = 1.7. The analysis of § 2.3 indicates that the corresponding correction to the 
current ratio is +2%. An additional -1% correction at 30 kV arises from relativistic 
effects, given by equation (25). 

According to equation (20) the maximum xenon ion density attained in the 
calculations is n+(O) = 1.1 x 1O1'/n2 ~ m - ~ .  This is located at the cathode surface for 
Vu = 30 kV and J-(0)Jo = 1.7, corresponding to Y(0)  = 0.52 in figure 3. The ion cross 
section U: required in equation (19) has been measured for xenon by Latypov et nl 
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Figure 4. The electron current density as a function of the product of xenon filling pressure 
(Torr) and electrode spacing (mm) at selected values of anode potential. 

(1964). They observed a peak value that was 17% greater than the peak value for 
neutral xenon. If this ratio of cross sections is maintained at all potentials then equation 
(19) indicates, with the above value of n+(O), that the increase in A at 30 kV due to 
electron-ion collisions is always less than A + (1 + 5 x f O - 3 / a ) A .  At J-(0)/Jo = 1.7 this 
fractional increase in A produces the same fractional increase in J-(0)/Jo. 
Consequently, for an electrode spacing of a = 1 mm the neglect of electron-ion 
collisions produces an error in the current ratio that is less than 5%. At V, = 10 kV the 
error is less than 2%. 

For V, = 30 kV and J - ( 0 ) / J o  = 1.7 equation (26) gives A + (1 0.03)A. 
Consequently the neglect of the self magnetic field produces an error in the current ratio 
at 30 kV that is less than 3%. For an anode potential of 10 kV this error is less than 1%. 

Table 1 gives the times T~ and 7 2  for pulsed operation of a xenon-filled diode 
according to equations (27) and (28). The values of r2  are appropriate to a maximum 
ionisation cross section of 4.8 x cm2, as given by Massey and Burhop (1969). For 
an electrode spacing of 1 mm and an anode potential in the vicinity of 3 kV the times T~ 

and 72 are comparable to the time scales associated with diode energisation by a strip 
transmission line. Such lines have a current rise time of about 20 ns, determined by 

Table 1. The time scales T ~ ,  T* for pulsed operation of a xenon-filled diode and the time T~ 

for establishment of the steady state at J-(0)/Jo= 1.7. 

1 39 530 1.5 0.39 53 150 
3 23 100 0.66 0.23 10 66 

10 12 17 0.29 0.12 1 .7  29 
30 7.2 3.2 0.14 0.072 0.32 14 
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switch characteristics, and a pulse length of about 100 ns, determined by the physical 
length of the line. For higher anode potentials, at this electrode spacing, the neutral 
depletion is too fast to permit a pulsed regime of operation. At the greater electrode 
spacing of 1 cm it is found that T~ is appreciably greater than for all voltages presented 
and these time scales are well suited to diode energisation by a lumped parameter 
network. The value off required in equation (31) is determined from tabulated values 
of atomic thermal velocity and mean free path. For xenon the value obtained is 
f = 1.20 x lo1* cm-' s-' at 20 "C, inferred from the tables of Loeb (1934) at STP. For a 
current ratio J - (0 ) / Jo  = 1.7 equation (31) restricts the steady-state anode potential to 
Vu S 4.4 kV for a = 1 mm and to Vu s 22 kV for a = 1 cm. The final column in table 1 
presents the time scale 73 of equation (32) for the establishment of the steady state. 

High-voltage diodes are frequently used as sources for electron beams and a low 
beam divergence is of prime importance. The inert gas atoms present a total scattering 
cross section for electrons that is between three and four times the ionisation cross 
section. However, for J-(0)/Jo = 1-7  equation (21) indicates that a xenon gas filling 
causes less than 0.2% of the electron beam to suffer an ionising collision in the electrode 
gap. Consequently the total scatter in the beam at the anode, due to the gas filling, is less 
than 1%.  
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